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ABSTRACT 

Several theories appropriate to the modeling of zone overlap in two-dimensional (2D) separations are reviewed. One of these, with 
specific applications tb chromatography, was recently proposed by one of the authors. The others are summarized in a book published 
over two decades ago. These latter theories addressed various problems of overlap (none of which was chromatographic), which were 
once of interest in the biological and hygienic sciences. Several hundred computer simulations of 2D beds containing various numbers 
of randomly distributed zones were generated to evaluate these theories. One theory shows exceptional promise in correctly predicting 
the numbers of single 

1 
and multiplet spots expected in 2D beds over a wide range of chromatographic saturations. This theory predicts 

that only one sixth of ,the spot capacity in a 2D bed can be used to resolve spots. A procedure based on this theory is proposed, by which 
one can estimate the! number of detectable zones in a 2D bed from the distribution of distances between the observed spots. The 
procedure was tested and verified by its application to about 200 computer simulations of 2D beds containing various numbers of 
randomly distributed zones. 

INTRODUCTION 

Recently, one of us (J.M.D.) reported equations 
for the numbers of singlet, doublet and triplet spots 
expected in two-dimensional (2D) separation beds 
containing randomly distributed zones [l]. The 
separations carried out in these beds are of the 
sequential type [2] and commonly are implemented 
in a rectangular bbd, through which zones migrate at 
right-angles in two discrete stages. Such beds are 
used routinely in thin-layer/thin-layer chromato- 
graphy and sodium dodecyl sulfate (SDS) electro- 
phoresis/isoelectr‘ic focusing. The elution profiles of 
some recently developed coupled columns, e.g., 
capillary zone electrophoresis-liquid chromato- 
graphy [3] and gas chromatography-gas chromato- 
graphy [4], also {losely resemble the distribution of 
zones in such beds. This work was the logical 
extension of earlier work on the surprisingly pro- 

found statistical limitations of one-dimensional 
(1D) separations [5-221. 

The equations for these spot numbers were tested 
by the interpretation of computer simulations of 2D 
beds containing randomly distributed zones [l]. 
When the space available for separation, as mea- 
sured by the spot capacity of the bed, exceeded the 
number of zones by a factor of live or more, the 
equations’ predictions agreed fairly well with the 
results of the simulations. At higher saturations, the 
numbers of singlet spots continued to agree well with 
the predictions of theory, but the numbers of 
doublet and triplet spots exceeded those predicted 
by theory. 

Perhaps the most surprising conclusion drawn 
from this study was that the spot capacity of a 2D 
bed is utilized for separation less efficiently than is 
the peak capacity of a 1D chromatogram, at least 
when statistical considerations apply [l]. In other 
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words, per unit capacity, 2D separations actually are 
worse than their 1D analogues. This conclusion also 
was reached by Martin [23]. In essence, the only 
reason that 2D separations are better than their 1D 
analogues is that one typically has so much more 
capacity in tyo dimensions than in one dimension 
that one can afford to “waste” a substantial fraction 
of it by ineffective utilization [l]. 

A specific example is cited to illustrate this point 
[ 11. If a lOO+component mixture were partially 
resolved on a 2D bed with a spot capacity of 2000 (a 
realistic value)i, then approximately 82 singlet spots, 
7 doublet spots and 1 triplet spot would be expected 
(these spots account for 99% of the components). In 
contrast, if the same mixture were partially resolved 
on a 1D column having a peak capacity equal to 
2000 (an unrealistic value, even in capillary electro- 
phoresis), then 90 singlet peaks, 4 doublet peaks and 
no triplet peaks would be expected (these peaks 
account for 98O/ of the components). For equal 
capacities, the number of singlets (multiplets) is 
smaller (larger) in a 2D separation than in a 1D 
separation. Perhaps the reason why this phenom- 
enon has not been observed experimentally is that 
unrealistically ~large 1D peak capacities are required 
to make the comparison. 

After the submission of this work [l], one of us 
(F.J.O.) found a short but enlightening book by 
Roach [24], which details several studies during the 
194Os-1960s in the biological and hygienic sciences 
of phenomenalclosely related to the overlap of spots 
in 2D beds. This book summarizes the results of 
several studies1 on counting errors, including those 
due to the underestimation of the numbers of 
bacterial colonies grown on culture plates, the 
numbers of dust particles collected on sampling 
plates and the numbers of coal particulates (to which 
miners were exposed) collected on thermal precipita- 
tors. These counting errors arose from the overlap of 
colonies or particulates by one another, which 
obscured some from detection. This obscuration is 
identical with that faced by the separation scientist. 
Several theories were proposed to account quantita- 
tively for these overlaps. As will be shown below, 
most of these theories are inferior to that proposed 
by Davis. A theory proposed by Roach, however, 
accounts for overlap more correctly at higher satu- 
rations (i.e., smaller spot capacities) than does the 
theory of Davis In fact, in terms of its completeness 

and utility, the theory of Roach is perhaps the best 
theory considered to date by which to describe 
overlap in 2D beds. 

This paper is divided into three parts. Because the 
studies addressed by Roach’s book are probably 
unknown to most chromatographers, the first part 
of the paper summarizes these works and contrasts 
them with the recent results of Davis. In the second 
part, the theory of Roach is extensively tested by 
computer simulations of 2D beds containing various 
numbers of randomly distributed elliptical or circu- 
lar zones. In the final part, a regressional procedure 
based on the theory of Roach is proposed, by which 
one can estimate the total number of detectable 
zones in a single 2D bed from the distribution of 
distances among the observed spots. 

THEORY 

Comparison of theories of spot overlap in two dimen- 
sions 

According to Davis [l], the numbers of singlet 
spots s, doublet spots d, straight-chain triplet spots t, 
and interlocking triplet spots ti expected in a 2D bed 
of area A, which contains m randomly distributed 
detectable circular zones of diameter do, are 

s = fie-4a (la) 

d=8Fii. 
,2, - 8a 

1 _ e-4a (lb) 

256 _ C14e-12a 

t,w---em. 
5 (1 - e-4”)2 

512 _ a6e-12a 

li =Trna lima-+0 [l - (1 + 4a)ee4”12 W 

where Zi is a statistical approximation to m and a, 
the saturation of the bed, is the ratio of fi to the spot 
capacity n,. The spot capacity is defined as 

n, = A/A0 = 4A/n(/3do)2 (2) 

where /I is a scalar, which allows one to adjust for the 
degree of overlap that is acceptable in a given 
application (e.g., zones are considered to be over- 
lapped if they touch or overlay one another, when 
fl = l), and A0 is the scaled area of a zone. This 
definition of spot capacity is different from that 
traditionally used in 2D separations [2] but is 
appropriate for this theory [l]. A straight-chain 
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a) straight-chaiin triplet t, 

l l 79 l 

b) interlocking triplet ti 
Fig. I. Triplet spots (a) tJ and (b) ti. 

triplet rs is defined by the overlap of a central zone by 
two other zones, iwhich themselves do not overlap; 
an interlocking triplet ti is defined by the overlap of a 
central zone by two other zones, which themselves 
overlap. These two types of triplets are illustrated in 
Fig. 1. The total number t of triplets is the arithmetic 
sum, t, + tie Eqns. la-d were derived from selective 
interpretations of the radial distribution functions 
governing a 2D Poisson process. 

The Taylor-series expansions of eqns. lb-d will be 
useful below and1 are 

(3a) 

(3b) 

(3c) 
lima-t0 

The analysis of 500 computer simulations of 2D 
beds containing q = 1000 components showed that 
the number s of singlets predicted by eqn. la is 
correct to within 7%, as long as c1 is less than 0.50. 
The same analysis indicated some errors at modest 
levels of saturations in the equations for d, t, and ti; 
more specifically, these equations are correct to 
within 10% as long as GI is less than about 0.20,O. 12 
and 0.24, respectively. For a values less than 0.10, 
the simulations indicated that multiplets other than 
doublets and triplets are unlikely and that the 
number of observable spots p could be approxi- 
mated by the arithmetic sum of eqns. la-d [l]: 

pxs+d+t,+ti a 6 0.10 (4) 

The other estimates of p summarized in Roach’s 
book are reported below. The original notation has 
been changed to be compatible with that introduced 
above. For the sake of consistency, the number p in 
these theories is interpreted as the number of spots, 
although the overlapping zones in these theories 
actually corresponded to other phenomena, e.g., 
bacterial colonies, dust, and coal particulates. (In 
passing, we note that the probabilities of forming 
singlet and multiplet 1D peaks from randomly 
distributed zones also are reported in this book, as is 
the mean number of 1D peaks. These results were 
not derived in terms of chromatography, however, 
but in terms of overlapping line segments.) 

Bourdillon et al. [25], who were interested in the 
effects of the overcrowding of colonies on culture 
plates, approximated the total number p of spots on 
these plates as the solution to the differential 
equation 

dp/diii = 1 -p/q (W 

z.e., 

p = Ei [ 1 - exp( - a)]/a (5b) 

Experimental evidence was presented which con- 
firmed the equation over a small range of a values. 

Shortly thereafter, Irwin et al. [26], who were 
interested in the overlapping of dust particles on 
sampling plates, developed an alternative theory, in 
which the probability p. that a zone forms part of a 
spot containing n overlapping zones was calculated 
from Poisson statistics as 

(6a) 

The total number p of spots then was estimated as 

cc 

p=m 
c 

p&z = Z[l - exp(-4a)]/4a (6’3 

II=1 

The result is identical with that of Bourdillon et al., 
except that a is replaced by 4a. The authors recog- 
nized the existence of shortcomings in their theory, 
especially when a was sufficiently large that triplets 
and higher order multiplets would be observed. 

Armitage [27j, in a detailed subsequent study, 
approximated the number of singlet spots by eqn. la 
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and the numbers d, t, and ti of multiplet spots by the 
series 

d x Ei 2a - 2(4n + 3fi)a2 
R 1 = E (2a - 11 .3080a2) 

(74 

- t, x m 0 .--.a’ = Ei(3.3080)a2 
n (7b) 

- 
tiZWl* 

2(4x - 3J5) 

3x 
.a2 = Ei(l.5640)a2 (7c) 

He further recognized that the derivation of higher 
order multiple&s was prohibitively difficult by his 
approach; Roach commented on this difficulty [24]. 
By expanding eqn. la as a three-term Taylor series in 
a and combining this expansion with eqns. 4 and 
7a-c, Armitage concluded that 

2(4rc - 3,,/?)/3 = Ei(1 - 2a + 1.564a2) 

(8) 

The theory of Roach [24] is described in some 
detail because, as will be shown below, its predic- 
tions closely agree with the numbers of spots found 
in extensive computer simulations carried out in this 
laboratory. Further, an understanding of Roach’s 
theory is essential to the development of the regres- 
sion procedure (see below) by which Ei can be 
estimated from the observed distribution of spots in 
a bed. 

In his theory, Roach assumed that the centers of 
circular zones of diameter d,, are randomly distrib- 
uted throughout an unbounded bed (he observed 
that these zones could represent many phenomena, 
including dust particles, metal fumes, acid mists, air 
pollutants Andy airborne organisms [24]). Any zone 
in the bed is considered to be overlapped if its center 
lies within the distance do of the center of an adjacent 
zone. In this work, for reasons that will be apparent 
shortly, this critical distance will be equated instead 
to j3do, where b is the scaling factor previously 
introduced. In Roach’s theory, /I = 1. 

The number of spots is determined in accordance 

with the following scheme. One arbitrarily selects 
any zone in the bed and finds its nearest neighbor. If 
the distance between these two zone centers is 
greater than /Id,, then the arbitrarily selected zone is 
a singlet spot. If the distance is less than j?d,,, 
however, then the two zones overlap. In this latter 
instance, the overlapping pair forms either a doublet 
spot or a higher order multiplet (e.g., triplet, quar- 
tet). One next finds the zone whose center lies closest 
to either of the centers of the two overlapping zones. 
In other words, if zones A and B are overlapped and 
lie in a bed containing zones A, B, C, D, etc., then 
one determines the distances between zones A and 
C, between zones A and D, between zones B and C, 
between zones B and D, etc., and then selects the 
shortest distance. If this distance is greater than #Id,, 
then the overlapping pair forms a doublet spot. If 
the distance is less than fid,,, however, then the 
selected zone overlaps with at least one of the two 
overlapping zones. In this latter instance, the over- 
lapping trio forms either a triplet spot or a higher 
order multiplet (e.g., quartet, quintet). One contin- 
ues to repeat this sequence of nearest neighbor 
searching (exclusive of the neighbors comprising the 
spot) and distance comparison, until the distances 
between all n zones in the spot and their neighbors 
not in the spot are greater than /Ido. One then has 
isolated a spot consisting of n overlapping zones, or 
an n-tet spot, as shown in Fig. 2 for n = 5. One then 
repeats the above procedure by beginning with 
another zone and continues until all zones are 
addressed. 

Roach recognized that the probability of these 
outcomes could be modeled closely (but not exactly) 
by the binomial distribution. The probabilityp, that 
the distance between a zone center and the center of 
its nearest neighbor is greater than fid,-, is [28] 

p1 = ee40 (9) 

The probability that the distance between a zone 
center and the center of its nearest neighbor is less 
than j?do is the complementary probability, 1 - pt. 
In an n-tet spot, one has IZ- 1 sequences in which 
nearest neighbor distances are less than j?do and one 
sequence, that which breaks the spot away from 
other zones in the bed, in which a nearest neighbor 
distance is greater than Bdo. In the quintet in Fig. 2, 
for example, the four distances a, b, c and dare less 
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Fig. 2. Illustration of Roach’s spot counting procedure. The five 
central zones overla to fonu a quintet spot. The distance 
between any zone ce R ter in the spot and at least one other zone 
center in the spot is l#s than /?&. The distances between all zone 
centers in the spot and all zone centers not in the spot are greater 
than /?dO. 

than /IdO and the one distance e is greater than BdO. 
Roach recognized that these distances were approxi- 
mately independent of each other, and it was this 
insight that reduced the 2D overlap problem to a 
tractable form. 4e concluded that the probabilityp, 
that a zone forms part of a spot containing IZ 
overlapping zones is [24] 

p” = e-4”(1 _ e-aa)n-l 
(10) 

Because each oft Ei zones has this prohahilitv of 
forming an n-tet spot, the number of zones contrib- 
uting to the formation of n-tet spots is isip,,. But since 
n zones are required to form each spot, the expected 
number P,, of n-tet spots is fip,/n, or 

pn = fie-4a(l - ,e-4a)n-1/n (11) 

Roach then calculated the total numberp of spots as 
the algebraic sum of all n-tet spots: 

00 

c 4ffe-4a 
P= P,=rn. 1 _ ep4” (12) 

The remainder of this paper principally will focus 
on the testing and use of this theory, although the 
other theories are also characterized. 

Detailed testing of Roach’s theory 
To our knowledge, the only test of Roach’s theory 

is presented in his book and is limited. In this test, 
Roach determined the coordinates of hundreds of 
points with a random number generator having six 
significant figures, plotted these points on graph 
paper, drew with a compass circles of fixed diameter 
about these points and manually counted the num- 
ber of overlaps so generated (/I = 1). More specifi- 
cally, he determined the numbers of singlets and 
multiplets (up to septets) for m values of 100, 150, 
200,250,300,350,400,500,600,800,1100,1500 and 
2220 [24]. The spot numbers so determined agreed 
fairly well with his theory, as will be shown below. 

We have augmented substantially this testing of 
Roach’s theory for two reasons. First, for each value 
of m cited above, the singlet and multiplet numbers 
reported by Roach were determined from only one 
simulation and consequently are not statistically 
robust. Second, and more important, zones in 2D 
separations actually are elliptical [2], instead of 
circular. In Roach’s theory (indeed, in all of the 
theories outlined above), however, zones are as- 
sumed to be circular. The error introduced by this 
assumption has not been quantified, except in a 
cursory way [l], and is investigated here. 

In general, a theory for the overlap of elliptical 
zones is considerably more difficult to develop than 
that for circular zones, because one no longer can 
assume that nearest neighbors overlap [l]. The 
overlap of randomly distributed convex laminae of 
arbitrary shape has been addressed by Mack [29,30] 
and can be adapted to elliptical zones, as shown by 
Roach [24]. Unfortunately, this theory is not appli- 
cable to 2D separation beds, because Mack assumed 
that the laminae were randomly ordered in the bed 
(he was interested in the random deposition of dust 
particles). Davis addressed the problem in a prelimi- 
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nary way by calculating the probability pi(e) that an 
elliptical zone of aspect ratio y (Le., the ratio of the 
ellipse’s semi-major axis to its semi-minor axis) is a 
singlet, which is [l] 

2x 

PI(e) = (2x)- ’ exp -4a. 
s ( 

Y 
cos’ 8 + y2 sin’ 8 > 

de 

0 

(13) 

He concluded that the probability of forming ellipti- 
cal singlets is greater than the probability of forming 
circular singlets at any saturation o! and that this 
probability increases with both a and y. 

The applicability of Roach’s theory to elliptical 
zones, and the further testing of this theory by the 
overlap of circular zones, were characterized here by 
computer simulation. Spotsp, singlets s and various 
multiplets were counted by visual inspection. For 
completeness, these simulation results also were 
compared with the predictions of Davis. 

Procedure by Which fi can be estimatedfrom a single 
bed 

As was suggested by Davis [l], the number p of 
spots in a 2D bed can be counted and the spot 
capacity n, of the bed can be estimated. One then can 
tit these data to eqn. 4 and estimate the number Z of 
detectable components in the bed. The principal 
motive for this estimation is determining the extent 
of separation 1151, the square of which equals the 
ratio, $5. This ratio, in turn, is a measure of the 
quality of the1 separation. The calculation of this 
ratio is straightforward, because once Ei has been 
determined, a can be estimated from the definition, 
Z-r//n,, and s can be estimated from eqn. la, 5 and a. 

An alternative procedure, by which one can 
estimate 5 from the distribution of spots in a 2D 
bed, is suggested here. This procedure is analogous 
to the “single-chromatogram method” based on the 
statistical model of overlap (SMO) [13], by which 
one can estimate the number of components in a 1D 
chromatogram from the distribution of distances (or 
times) between adjacent maxima. In essence, one 
determines by :this procedure a series of spot num- 
bers p, in accordance with the theory of Roach. The 
numbers p differ for each determination, however, 
because one seks the span /?do to different values by 
arbitrarily chamging the scalar, /I. In other words, 
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different values of /Ido (i.e., different values of n; ‘) 
correspond to different values of p, in accordance 
with eqns. 2 and 12 and the definition, cc = Z/n,. 
With this scaling, one can generate a set of coordi- 
nates pairs, (n[ ’ ,p) and then fit them to eqn. 12 with 
E as a least-squares parameter. One would expect 
this fitting usually to provide a better estimate of Z 
than that determined from a single datum, simply 
because one has more information on which to 
draw. 

It should be emphasized that the numbersp and n, 
so generated have little, if any, physico-chemical 
meaning. They are to be distinguished from the 
physically meaningful spot number p, which corre- 

P 

_ 
I%& p=7 

a 

L 
w 

% -’ = @do)* /4A 

b 

%-” = a@iJ2 /4A 

c d 
Fig. 3. Illustration of procedure by which iii is estimated from a 
single bed. (a) Hypothetical bed in which all zone centers are 
visible, even when overlapped. The number p = 7 for the 
indicated value of j%&. The groups of encircled zones each 
correspond to a “spot”. (b) Graph of number p vs. reciprocal 
capacity n; i constructed from the distribution of distances 
among zone centers in (a). Solid curve represents least-squares tit 
of data to eqn. 12. (c) More realistic bed in which some zone 
centers are obscured by overlap and spot positions are repre- 
sented by a single coordinate. (d) Graph of number p vs. 
reciprocal capacity n; 1 constructed from the distribution of 
distances among spot coordinates in (c). For DC& values less than 
(&,)*, p equals the total number of spots. Solid curve represents 
least-squares tit of indicated data to eqn. 12. 
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sponds to the number of distinct clusters in the bed, 
and from the physically meaningful spot capacity n,, 
which corresponds to the number of spots resolvable 
by the bed. However, we shall use the same variable 
to describe both quantities, because they are indis- 
tinguishable in a mathematical sense. The distinc- 
tion should be apparent from context. 

The generations and interpretation of these data is 
illustrated in Fig. 3. Fig. 3a is part of a hypothetical 
2D bed in which the centers of all zones are 
observable, even iwhen the zones overlap. For the 
/U,, value in the figure, p equals seven and corre- 
sponds to the three singlets and the four groups of 
zones, which are encircled. Lest any misunderstand- 
ing arise, each zone center in an encircled group is 
within distance /.I&, of some other zone center in the 
group, and all zones in an encircled group are 
separated from all zones not in the group by 
distances greater than j?d,,. A different value of /Id,, 
(or n; ‘) would correspond to a different value of p, 
in accordance with the above discussion. The data 
are plotted in Fig., 3b asp vs. n; I, the latter of which 
is directly proportional to #I&,. The curve represents 
a non-linear least-squares fitting of the data so’ 
generated to eqn. il2. Because all the zone centers in 
the bed are observable, the value of p at /Ido = 
n, - ’ = 0 corresponds to the total number of zones. 

In an actual bud, however, overlap obscures the 
positions of some: zone centers, as shown in Fig. 3c. 
To apply the procedure to such a bed, one must 
approximate the positions of these centers by other 
easily measurable1 positions, such as the positions of 
maximum concentration or the first moments of 
spots. In general, Ithe centers of closely overlapping 
zones are obliterated completely by overlap, and 
the remaining measurable positions (however they 
are determined) are somewhat removed from each 
other. Because of this obliteration, the distances 
between measurable positions are all greater than a 
critical value of jB&, which is designated here as 
@Id,,)*. For values1 of BdO less than or equal to (/3d,,)*, 
the number p is independent of /Ido and equals the 
number of spot i centers in the bed. As /3& is 
increased beyond (/I&)*, however, the number p 
decreases, as shown in Fig. 3d. Only the data for 
which j?dO > (/G$)* are fitted to theory. 

At low saturations, only a few multiplets exist, 
and the positions of only a few zone centers are 
distorted by overlap. In this instance, the data 

plotted asp vs. n; ’ in Fig. 3d differ little from those 
in Fig. 3b [except when /Ida < (/Id,,)*], and a fitting 
of the appropriate data to eqn. 12 provides a good 
approximation to Ei. As the saturation increases, 
however, the numbers of multiplets increase, and 
eventually the measurable positions of spots have 
little correlation with the positions of the underlying 
zone centers. In this instance, the least-squares 
fitting of the appropriate data provides a poor 
estimate of E. 

We should emphasize that this procedure will 
work well only if the theory to which the coordi- 
nates, (n; I, p), are fitted correctly describes the 
numbersp at large values of a. This limitation arises 
because large a values are determined by selecting 
arbitrarily large values of j?. As is shown below, only 
the theory of Roach correctly describes the numberp 
at high saturations. Hence, only his theory was used 
to test the procedure proposed here. Computer 
simulations were analyzed to determine the satura- 
tion below which reliable estimates of Tii can be 
calculated. 

The reader may find a complete 1D analogy to 
this procedure in ref. 13. 

Methods of spot counting 
One can envision at least three ways by which 

spots in a 2D bed can be counted. The first way, in 
which some degree of physical overlap is tolerated 
among resolved zones, corresponds to a j? value of 
less than one [l]. The second way, in which zones 
that overlay one another by any amount are con- 
sidered to be overlapped, corresponds to a jI value 
equal to one. This method of counting previously 
was employed by both Roach [24] and Davis [l]. The 
final way, in which clusters of spatially resolved 
zones are grouped together and identified as 
“spots”, as discussed above, corresponds to a j? 
value greater than one. The latter two ways of 
counting, but not the first, are used here. More 
specifically, the values ofp, s and multiplet numbers 
determined by visual inspection of 2D beds corre- 
spond to /? = 1, and the values of p determined by 
applying the regression procedure correspond to 
j? >, 1. In a similar manner, peaks in 1D chromato- 
grams have been counted in applications of the 
SMO by using various values of the resolution factor 
Rl (which is analogous to /I), such as 0.5 [ 10-121, 1 .O 
[16] and 1.5 [lO,ll]. 
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PROCEDURES TABLE I 

VALUES OF a CORRESPONDING TO COMPUTER SIMU- 
LATIONS OF 2D BEDS CONTAINING CIRCULAR AND 
ELLIPTICAL ZONES 

As observed in the second part of the Theory 
section, computer simulations of 2D beds were 
produced to augment the testing of the theory of 
Roach. These ibeds contained various numbers m of 
circular or elhptical zones; more specifically, m was 
varied among~ the values, 25, 50, 150, 300, 500, 750 
and 1000. The coordinates of each zone center were 
computed by two sequential subroutine calls on an 
in-house random number generator adapted from 
ref. 31. The zones then were plotted as circles or as 
ellipses with aspect ratios equal to two with 
the Macintosh application, KaleidaGraph 2.0.2 
(Synergy So&ware, Reading, PA, USA). These 
graphs then were plotted by either a dot matrix 
(ImageWriter1 II, Apple Computer, Cupertino, CA, 
USA) or laser printer (LaserWriter II). The various 
singlet and multiplet spots in these plots were 
counted, such1 that zones which touched or overlaid 
one another were considered to be overlapped (/I = 
1). A total of 240 simulations of beds containing 
circular zones and of 170 simulations of beds 
containing elliptical zones were interpreted. 

The choice’ of an elliptical aspect ratio equal to 
two was completely arbitrary. Indeed, a study based 
on widely varying aspect ratios would be desirable. 
Such a study is postponed to a later date, however, 
to limit the data here to an amount that can be 
assessed in detail. 

For both the circular and elliptical zones, a mini- 
mum of three and a maximum of five simulations 
were generated for each value of m at a particular a. 
The sizes of the circular and elliptical zones were 
limited to those available in KaleidaGraph 2.0.2. 
Various saturations were obtained for each m by 
combining various zone sizes with various square 
and rectangular bed shapes. The values of the bed 
perimeters were set in KaleidaGraph 2.0.2 (and 
confirmed by ~measuring them with a ruler), and the 
areas of several singlet zones were measured with 
calipers to three significant figures. From the mea- 
sured areas, the spot capacity n, was calculated in 
accordance with eqn. 2 (fi = 1) and a was approxi- 
mated as m/nJ. The various a values corresponding 
to the simulakions are reported in Table I. The a 
values for then circular and elliptical zones typically 
are not equal, I because of the constraints imposed by 
KaleidaGraph 2.0.2. Further, the a values do not 

WI 

25 

50 

150 

300 

500 

750 

1000 

a fB = 1) 

Circular zones 

0.0287, 0.0470, 0.0696, 
0.100, 0.130, 0.164, 
0.202, 0.260, 0.298, 
0.347 

0.0124, 0.0291, 0.0558, 
0.0950, 0.139, 0.195, 
0.258, 0.332, 0.403, 
0.505 

0.0372, 0.0874, 0.172, 
0.282, 0.418, 0.595 

0.0688, 0.131, 0.175, 
0.259, 0.345, 0.423, 0.563 

0.0896, 0.119, 0.219, 
0.291, 0.431, 0.574 

0.134, 0.169, 0.328, 
0.437, 0.647 

0.172, 0.239, 0.438, 
0.583 

Elliptical zones (y = 2) 

0.0466, 0.0976, 0.122, 
0.163, 0.204, 0.248, 
0.292, 0.350 

0.0302, 0.0573, 0.137, 
0.193, 0.252, 0.331, 
0.407, 0.497 

0.0325, 0.0906, 0.175, 
0.294, 0.416, 0.560 

0.0651, 0.181, 0.350, 
0.577 

0.108, 0.137, 0.302, 
0.584 

0.163, 0.206, 0.453, 
0.539 

0.217, 0.275, 0.604, 
0.719 

form a simple numerical progression (e.g., a = 0.05, 
0.10, 0.15, etc.), because of constraints on the sizes of 
zones and beds. 

We briefly observe that the a values calculated as 
described above for ellipses (but not for circles) 
varied with the output device. In other words, the 
identical graph, when plotted on the dot matrix and 
laser printers, resulted in slightly different a values 
(on average, the values varied by about 3%). Some 
of the slight variations reported in Table I can be 
attributed to this behavior. Also, some of the beds of 
elliptical zones, when plotted with the laser printer, 
contained ellipses with y values lying between 1.9 
and 2.0, instead of ys which exactly equalled 2.0. We 
tolerated this small error (5% or less), instead of 
rejecting the graph. 

Fig. 4 reports five simulations of square beds 
containing m = 50 zones of different size. The 
sequence of random numbers defining the zone 
centers is the same in each simulation. The various 
beds span the range 0.056 < a < 0.258 (@ = 1). As 
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Fig. 4. Computer-simulated beds containing M = 50 compo- 
nents at various saturations G( (B = 1). Coordinates of zones 
centers in each bed are identical. 

observed above, the larger c1 values are not simple 
multiples of the smallest u, because of constraints on 
the generation of these plots. These beds should 
prove useful in gauging the severity of overlap at 
different saturatiions. 

A preliminary testing of the regression procedure 
outlined in the thiird part of the Theory section was 
implemented by generating several computer simu- 
lations of square 2D beds containing m = 100,200 
and 300 zones. For each m, ten simulations were 
produced at eachlof the a values, 0,0.05,0.10,0.15, 
0.20 and 0.25 (fi = 1). In contrast to the study 
described above, a could be assigned regularly 
spaced values here, because KaleidaGraph 2.0.2 was 
not used to genjerate beds for visual inspection. 
Rather, all necess ry computations were implement- 
ed with a compu ,” er algorithm. In total, 180 simula- 
tions (ten simulations per u times six CI values times 
three m values) were generated. The regression 

procedure was applied to each simulation. 
The coordinates of the zone centers in these beds 

were computed by the in-house random number 
generator described above. For each m, a different 
sequence of coordinates was generated for each of 
the ten simulations. For each m, however, the same 
ten sequences of coordinates were used to generate 
simulations at different c1 values. This usage made 
the beds for any one value of m identical, except for 
the value assigned to CL 

We recognized that our Ei estimates would not 
equal m exactly, even under the best of circum- 
stances, because only a limited number of beds were 
sampled and because small systematic errors existed 
in the random number generator. Consequently, we 
decided to use the Z estimates determined from beds 
for which a = 0 as a basis by which to evaluate the 
quality of other E estimates. For c1 = 0, the zone 
diameter d,, was equated to zero. In other words, 
these beds contained only zone centers, i.e., a 
sequence of randomly spaced points. (The resultant 
beds are analogous to the “line chromatograms” of 
the 1D “single-chromatogram method” [ 131.) The 
distances between each point and its neighbors were 
calculated. From these distances the coordinates 
(n; ‘, p) were determined as detailed in the Theory 
section (here, the various non-zero spans /Id,, were 
interpreted as a series of arbitrary distances, as do = 
0). These coordinates then were fitted to eqn. 12, 
except for the coordinate (n; ’ = 0, p). This coordi- 
nate was specifically excluded, because its inclusion 
forced the Z estimate to equal m. Approximately 30 
to 40 data points were generated for purposes of 
regression. No value ofp less than 20 was included in 
a fit to minimize the effect of small-number statistics 

P31. 
In the other simulations, the zone diameter do was 

determined in accordance with assigned values of 
a w m/n,, the spot capacity, n,, as defined by eqn. 2 
and the criterion B = 1 (no elliptical zones were 
considered in this part of the study). The spot 
number was counted in accordance with the crite- 
rion fi = 1; zones separated by spans less than d,, 
were considered to overlap. Once the number of 
spots in a given simulation had been determined, 
then a single representative coordinate was assigned 
to each spot. The representative coordinate of a 
singlet spot was the coordinate of the zone center, 
and the representative coordinate of a multiplet spot 
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was the arithmetic average of the coordinates of the determine, however, and are sufficient for our 
zone centers comprising the multiplet spot. In purpose here, which is simply to verify the regression 
general, the representative coordinates of multiplets procedure (the optimization of the procedure is 
determined by these means do not correspond to any addressed later). The distances between these coor- 
physically measurable positions. They are simple to dinates were then calculated to determine the data 

60r i 

a 

60 

pf / 

40 I I’ 
Armirqe ” m=looO 

30 :' soocycles 

Fig. 5. (a) Graphs ofp/n, vs. ~1 predicted by Davis (eqns. 1 and 4), Bourdillon et al. (eqn. 5b), Irwin et al. (eqn. 6b), Armitage (eqn. 8) and 
Roach (eqn. 14). All equations but the last were divided by n,. (b) Graphs ofp/n, vs. a for ID and 2D separations. The former graph is 
defined by a exp( i a) and the latter by eqn. 14. (c) Graphs of doublet number d vs. a (B = 1) predicted by Davis (eqn. lb), Irwin et al. (eqn. 
6a, with n = 2, multiplied by Ez). Armitage (eqn. 7a) and Roach (eqn. 11, with n = 2) for m = iii = 1000 zones distributed randomly in a 
square bed. Circles represent the average numbers of doublets determined from 500 computer simulations. (d) Graphs of triplet number t 
vs. a (p = 1) predicted by Davis (sum of eqns. lc and d), Irwin et al. (eqn. 6a, with n = 3, multiplied by Z), Armitage (sum of eqns. 7b and 
c) and Roach (e n. 11, with n = 3) for m = iii = 1000 zones distributed randomly in a square bed. Circles represent the results of 

f simulations, as de ailed above. (e) Graphs of straight-chain triplet number fs vs. a (B = 1) predicted by Davis (eqn. lc) and Armitage (eqn. 
7b). Circles represent the results of simulations, as detailed above. (f) Graphs of interlocking triplet number tr vs. a (B = 1) predicted by 
Davis (eqn. Id) and Armitage (eqn. 7~). Circles represent the results of simulations, as detailed above. 
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pairs (n: ‘, p), as detailed above. Approximately 
30-40 data pairs were generated for each regression. 
As before, no values of p less than 20 were used. 

For each simulation, these coordinates were plot- 
ted in KaleidaGraph 2.0.2 and examined. The data 
for which /Ido < (/?d,)* were excluded from the 
non-linear regre$sion. Some subjective judgment 
was required in the inclusion or elimination of some 
of these data, as is also required in the application of 
the SMO. 

The algorithmi necessary for these computations 
was written in FORTRAN 77 and executed on the 
GX-308 1 computer at Southern Illinois University. 
The least-squares regressions were carried out in 
KaleidaGraph 2.b.2. 

RESULTS AND DISCUSSION 

Fig. 5a is a graph of the various theoretical 
estimates of the : ratio p/n= vs. a. These ratios are 
obtained by dividing both sides of eqns. lad and 4, 
5b, 6b, 8 and 12 by n, and then substituting the 
identity a = FE /rq,. The specific result for the theory 
of Roach, which will be examined in more detail 
below, is 

ph = 
4aZ exp( - 4a) 

1 - exp(+4a) (14) 

and is plotted in bold. All of the theories predict 
essentially identical results for sufficiently small 
values of a (e.g.,‘a < 0.10). Relative to the results 
predicted by Roach, the p/q estimates predicted by 
Bourdillon et all, Irwin et al. and Armitage are 
unduly large at 'gh saturations. Further, at large 

‘f: saturations, the t eory of Irwin et al. unrealistically 
predicts that p/n,! approaches the constant value l/4 
(for similar reasons, Bourdillon et al’s theory 
approaches p/q = 1 at a values larger than shown 
here). These findings are indicative of errors in these 
theories. One observes that the theory of Davis 
underestimates p/n, at a values greater than ca. 0.20 
relative to the re$ults of Roach. This underestima- 
tion is expected, however, in part because multiplets 
larger than triplets are neglected in this theory. 

By differentiating eqn. 14 with respect to a, 
equating the derivative to zero and solving the 
resultant equatiob numerically, one can show that 
the maximum value of p/no as predicted by Roach, 
is 0.162 and is found at a = 0.398. In other words, 

only about one sixth of the entire spot capacity of a 
bed can be used to resolve spots under the best of 
circumstances, when statistical considerations apply 
(as observed elsewhere [ 11, less than one tenth of the 
bed can be used to resolve singlet spots). This 
fraction is considerably smaller than the maximum 
number of peaks resolvable per unit peak capacity in 
1D chromatograms, which is e-l = 0.368 [I. Fig. 
5b is a graph ofp/n, vs. a, in which the ratiospln, for 
1D and 2D separations are compared (the theoreti- 
cal relationship for the 1 D separation is a exp (-a) 
[7]). At all saturations, the available capacity is 
utilized less effectively in two dimensions than in one 
dimension. This graph supports the conclusion 
asserted in previous works [ 1,231 and reported in the 
Introduction that per unit capacity, 2D separations 
are actually worse than their 1D analogues. 

The theories of Irwin et al., Armitage, Roach and 
Davis all predict that the number of singlets is given 
by eqn. la. However, their predictions of the 
numbers of multiplet spots differ substantially. Fig. 
5c is a graph of the number of doublets d VS. a 
predicted by these four theories for Z = 1000. The 
circles represent the average numbers of doublets 
found in 500 computer simulations of 2D beds, each 
of which contained m = 1000 zones distributed 
randomly in a square area (these data have been 
reported elsewhere [l]). The number d is correctly 
predicted by all four theories, when a < cu. 0.05. 
The theories of Irwin et al. and Armitage, however, 
clearly break down at levels of saturation greater 
than this. For values of a > ca. 0.15, the theory of 
Davis underestimates d, although the theoretical 
prediction more or less parallels the results of the 
computer simulations. The theory of Roach also 
slightly underestimates these results at higher satu- 
rations but agrees with them more closely than that 
of Davis. Similar trends are indicated in Fig. 5d, 
which is a graph of the total number t = t, + ti of 
triplets vs. a predicted by all four theories and also 
determined by computer simulation. In particular, 
the theories of Irwin et al. and Armitage agree with 
the simulation results only for very small values of a. 

Only the theories of Armitage and Davis distin- 
guish between the two triplet types, t, and ti. Fig. 5e 
and fare graphs of t, and ti vs. a predicted by these 
theories and also determined by computer simula- 
tion. The theory of Davis has some shortcomings at 
large saturations but correctly describes both t, 
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and ti at modest saturations. The predictions of 
Armitage, however, agree with simulation only for 
extremely small values of u and depart drastically 
from these simulations at higher saturations. 

It is instructive to compare the Taylor-series 
expansions of Ithe equations derived by Davis to the 
series approximations derived by Armitage. A com- 
parison of eqns. 3a and 7a shows that the terms 
linear in TV are identical and that the quadratic terms 
in c1 differ by -5.76% if one arbitrarily normalizes 
the difference by the prediction of Davis. This 
difference is not unduly large, but because the theory 
of Armitage predicts donly to quadratic powers of a, 
it breaks doin at even small a values. The com- 
parisons of eqns. 3b and 7b and of eqns. 3c and 7c 
show that the quadratic terms in u oft, and Ii are also 
close (for t, the difference is 3.38% and for ti it is 
-2.25%, if one again normalizes the differences by 
the predictions of Davis). In his derivation, Davis 
analytically determined the functional forms of I, 
and ti but had ito determine the coefficients by which 
to multiply thuse forms by empirical means [l]. He 
suggested that someone probably would theoretical- 
ly account for the values of these coefficients 
someday [l]. Little did he realize the work had 
already been done (at least for the c? term) some 42 
years earlier! 

The simulations described above were determined 
with a large rl;l value (1000) to ensure that enough 
events were included for the statistics to be meaning- 
ful [ 11. Fig. 6 is a plot of the dimensionless functions 
p/no s/n, and d/n, vs. u (fl = 1) as determined from 
the visual inspection of several hundred simulations 
of 2D beds containing a wide range of m values 
(25 <m . < 1000). The various solid (dashed) curves 
in these figures represent the predictions of Roach 
(Davis), unless noted otherwise. The solid curves in 
Fig. 6a and b are graphs of eqn. 14, whereas the 
dashed curves are graphs of eqn. 4, divided by n,, 
with S, d, t, and ti expressed by eqns. la-d. The solid 
curves in Fig. 6c and d are graphs of eqn. la, divided 
by n, (here, the predictions of Roach and Davis are 
identical), whereas the dashed curve in Fig. 6d is a 
graph of eqn. I3, multiplied by a. The solid curves in 
Fig. 6e and f dare graphs of eqn. 11, divided by n,, 
with n = 2, whereas the dashed curves are graphs of 
eqn. lb, divided by n,. The numbers m of zones 
corresponding to the various symbols are identified 
in the figure caption. Not all of the available data are 

plotted in order to minimize the overlap of various 
symbols. The open diamonds in Fig. 6a, c and e 
represent the single determinations of Roach. 

The division of the indicated equations by n, 
allows one to make the substitution a = ii/n,, such 
that these functions depend only on a. Further, 
because eqn. 13 equals the probability PI(e) of 
forming elliptical singlets, one must multiply it by 
a = m/n, to obtain the number s = *PI(e) of 
elliptical singlets per capacity n,. For a specified 
value of y, this expression also depends only on a. 
These various functions are represented in dimen- 
sionless form to enable us to represent spot numbers 
corresponding to widely varying m values in the 
same figure. 

Except for the open diamonds, the symbols in Fig. 
6 represent the means of spot numbers determined in 
this laboratory, and the error bars represent the 
standard deviations of these numbers (the standard 
deviations are not shown when they are smaller than 
the symbols). In 6a, c and e, the spots were formed 
from circular zones and in Fig. 6b, d and f from 
elliptical zones (y = 2). For both zone shapes, the 
largest deviations at any CI are associated with the 
smallest values of m. This finding, which also was 
observed in the 1D analogue to this study [32], is 
unsurprising and simply indicates that the relative 
standard deviation for Poisson processes increases 
with decreasing values of fi. Also, for any m, the 
largest deviations are associated with large a values. 
This observation again is unsurprising, because spot 
numbers decrease with increasing a and the relative 
deviation of any spot number from its small mean 
value consequently increases. This trend was also 
observed in the ID analogue to this study [32]. 
Because of the large deviations associated with small 
spot numbers, no values of p, s or d less than 15 are 
represented in the figure. 

The values of p/nc shown in Fig. 6a agree closely 
with Roach’s theory for ccs less than cu. 0.30 (/3 = 1). 
At higher saturations, the values of p/nc are slightly 
larger than expected, although this difference prob- 
ably is not statistically significant (the theory typi- 
cally lies within one standard deviation of the data). 
The results also agree well with the theory of Davis 
for a values less than ca. 0.20. This finding may be 
surprising, as Davis’s theory for triplet number t, 
underestimates this multiplet at c1 values larger than 
cu. 0.12 (see Theory section). The reason why the 
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elrcuhr zones Davis 
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Fig. 6. Graphs ofp/n, vs. a (B = 1) for (a) circular and (b) elliptical zones, as determined by visual inspection. Solid curves are graphs of 
eqn. 14; dashed curves are graphs of eqn. 4, divided by n,, with s, d, Z. and tr expressed by eqns. la-d. Graphs of s/n. vs. a (p = 1) for (c) 
circular and (d) elliptical zones, as determined by visual inspection. Solid curves are graphs of eqn. la, divided by n,; dashed curve in Fig. 
6d is a graph of eqn. 13, multiplied by u. Graphs of d/n. vs. a (B = 1) for (e) circular and (f) elliptical zones, as determined by visual 
inspection. Solid curves are graphs of eqn. 11, divided by n,, with n = 2; dashed curves are graphs of eqn. 1 b, divided by n,. Symbols 
corresponding to different nt values are: l = 25; 0 = 50; n = 150,O = 300; 0 = 500; A = 750; A = 1000; 0 = Roach’s data. 

numbers p (or p/nJ do not appear to be erroneous Armitage, whose theory severely underestimates 
over the a range 0112 < GC < 0.20 is that the “excess” doublets and overestimates triplets at even low a 
f triplets actually found partially compensate for values but correctly estimatesp up to a x 0.30 [271, 
the neglect of q rtets and other multiplets, which 

7 

as shown in Fig. 5a.) At saturations greater than ca. 
become increasin ly prevalent at saturations above 0.20, however, the theory of Davis underestimates 
0.10. (A similar trend is found in the work of p/4. 
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As shown in Fig. 6b, Roach’s theory also correctly 
predicts the numbers p/n= determined by counting 
elliptical spots (y = 2), when a is less than cu. 0.25 or 
so. At larger a values, the numbers p/nc (and 
consequently p) are greater than predicted by 
Roach. Unlike in Fig. 6a, this difference is statisti- 
cally significant; the differences between theory and 
simulation are greater than one standard deviation 

0.025 r 0.025 
1 r 

p 0.020 

(except for one datum) when a is greater than cu. 
0.30. The theory of Davis adequately predicts p/nc 
for a values less than ca. 0.20 but underestimatespln, 
at larger a values. 

Fig. 6c is a plot of s/n, vs. a, as determined by 
counting circular spots. The agreement between 
simulation and theory is good over the full a range, 
although it is best at low a values. At larger a values, 

0.015 
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0.000 

a 

a 

0 041 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

a a 
Fig. 7. Graphs of t/n, vs. CL @ = 1) for (a) circular and (b) elliptical zones. Solid curves are graphs of eqn. 11, divided by n,, with n = 3; 
dashed curves areigraphs of the algebraic sum of eqns. lc and d, divided by n,. Graphs of q/n, vs. a (B = 1) for (c) circular and (d) elliptical 
zones. Solidcurve/s are graphs of eqn. 11, divided by n,, with n = 4. Graphs of [p - (s + d + c + q)]/ nc vs. t( (B = 1) for(e) circular and 
(f) elliptical zones Solid curves are graphs of eqn. 14, less the algebraic sum of four different expressions of eqn. 11, all divided by n,. These 
four expressions are defined by n = 1,2,3 and 4. Symbols corresponding to different m values are 0 = 300; 0 = 500; A = 750; A = 
1000; 0 = Roadh’s data. 
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values of s/n, slightly exceed theory but not signili- 
cantly so. In part, these small discrepancies are due 
to “edge effects”, in which zones near the border of 
the 2D bed are partially shielded from overlap by the 
absence of zones outside the bed [l]. As shown in 
Fig. 6d, the theory for circular singlets correctly 
predicts the number of elliptical singlets (y = 2) 
when cl is smaller than cu. 0.20. In contrast, this 
theory predicts results that are statistically smaller 
than the simulatibn results when a is larger than cu. 
0.20. This lindinlg is in qualitative agreement with 
the prediction of Davis, who argued that singlet 
formation is more probable for ellipses than for 
circles [l]. The dashed curve is the quantitative 
prediction of Davis (y = 2). For a values less than 
cu. 0.40, the agreement between this prediction and 
simulation is good. The theory, however, does 
overestimate values of s/n, at higher a values, for 
unknown reasons. 

Fig. 6e and fare plots of d/n, vs. a for circular and 
elliptical zones, respectively. Here, we observe 
trends similar toi those found in previous figures. 
More specificallyl Roach’s theory correctly predicts 
values of d/n, for bverlapping circular zones over the 
full range of a values (see Fig. 6e), although the 
agreement is best1 for small a values. Roach’s theory 
somewhat underestimates the numbers of doublets 
formed from overlapping elliptical zones at large a 
values (see Fig. 6f), but unlike in Fig. 6b and d, this 
underestimation hoes not appear to be statistically 
significant. At least a part of this insignificance may 
be attributed to :the larger standard deviations of 
d/n,, which result from the small numbers of dou- 
blets found at the larger a values. The theory of 
Davis agrees well with the simulation results for a 
values less than cu. 0.20. 

Fig. 7 is a plot of the dimensionless functions t/n,, 
q/n, and [p - (S + d + t + q)]/n=, vs. a (/? = 1). 
Here, variable q represents the number of quartet 
spots, and p - (s + d + t + q) represents the 
algebraic sum of quintets, hextets and all other 
higher order multiplets. The solid curves in Fig. 7a 
and b are graphs of eqn. 11, divided by n,, with n = 
3, whereas the dabhed curves in these figures are the 
algebraic sums of eqns. lc and d, divided by n,. The 
solid curves in Fi . 7c and d are graphs of eqn. 11, 
divided by n,, wit t n = 4. The solid curves in Fig. 7e 
and fare graphs of eqn. 14, less the algebraic sum of 
four different expressions of eqn. 11, all of which are 

divided by n,. These four expressions are defined by 
then values, 1,2,3 and 4. The substitution a = Z/n, 
was used as before to scale the theoretical predic- 
tions and simulations to fit in the same graph. The 
numbers m of zones corresponding to the various 
symbols are identified in the figure caption. The 
open diamonds in Fig. 7a, c and e represent the 
single determinations of Roach. Fewer data are 
plotted in Fig. 7 than in Fig. 6 because spot numbers 
less than 15 again were excluded and this exclusion 
restricts the data to large m values only (m 2 300). 

The values of t/n, plotted in Fig. 7a and b show 
that Roach’s theory accurately predicts the number 
of triplets formed from either circular or elliptical 
(y = 2) zones over the examined a range. The 
standard deviations are somewhat larger than those 
in Fig. 6a-d because only a few triplets were found, 
even for large m. Davis’s theory adequately predicts 
t/nc for a values less than cu. 0.20. Roach’s theory 
also adequately describes q/nC for both zone shapes, 
although the scatter in the data is so large that a 
statistical agreement between simulation and theory 
is hardly surprising. This scatter results from the 
limited number of quartets observed. Interestingly, 
the results of Roach’s simulations are scattered 
about his theory for quartets (see Fig. 7c), again 
because so few quartets were observed in his study. 
This scatter reflects the lack of statistical robustness 
in his simulations. 

Because so few multiplets for which n > 5 were 
observed, we chose to plot their algebraic sum in Fig. 
7e and f. The ordinates of these plots, therefore, are 
the sums of the numbers of quintets, hextets, heptets, 
octets, etc., divided by n,. No standard deviations 
are reported here, because they would be meaning- 
less; these deviations would reflect not only varia- 
tions about the mean of a given multiplet but also 
variations among the means of different multiplets. 
The close agreement between simulation and theory 
further confirms the theory of Roach. 

We now turn our attention to evaluating the 
utility of the regression procedure proposed in the 
third part of the Theory section. Table II reports the 
statistical component numbers E estimated by 
fitting the data derived from 180 simulations of 2D 
square beds to eqn. 12. These estimates of iii are 
accurate to within cu. 10% as long as a < 0.15 (/? = 
1). In particular, for a values less than or equal to 
0.10, the Ei estimates differ from the estimates 
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TABLE II 

MEAN AND STANDARD DEVIATION OF NUMBERS iii 
OF COMPONENTS ESTIMATED FROM TEN COMPUTER 
SIMULATIONS OF SQUARE BEDS CONTAINING m = 
100,200 AND 300 ZONES 

Numbersp of spots were counted in accordance with the criterion 
B = 1. Results ini parentheses in the last column are percentage 
errors in iii, as calculated with respect to the m predictions at a = 
0. 

m a (B = 1) P ii estimates 

varied. The symbols corresponding to various CI 
values are identified in the figure caption. If one 
examines the data for whichp is independent of n; ’ 
(i.e., the data on the extreme left-hand side of the 
plot), one sees that the position of the first usable 
datum in the regression is increasingly shifted to 
larger values of n;l as a increases. If one now 
examines the data which are fitted to theory (i.e., the 
data on the right-hand side of the plot), one sees that 
values of p at any n; ’ are nearly identical when u is 
small but that these values increase with increasing 
a. For example, the values ofp at the n; ’ coordinate 
represented in the figure by an arrow, n;’ = 
0.00565, are 31, 35 and 42 for a values of 0.05,0.15 
and 0.25, respectively. This increase in p with 
increasing CI is similar to that observed in the 
computer simulations by which the “single-chroma- 
togram method” was tested [13]. These increases 
lead to the loss of curvature in the data representing 
function p (i.e., eqn. 12) at large ES; indeed, the 
variation of p with n; ’ is almost linear for D! = 0.20 
and 0.25. This linear variation is a warning sign that 
the estimates of Ei will be unreliable. 

100 0.00 
0.05 
0.10 
0.15 
0.20 
0.25 

200 0.00 
0.05 
0.10 
0.15 
0.20 
0.25 

300 0.00 
0.05 
0.10 
0.15 
0.20 
0.25 

100.0 + 0.0 100.1 f 5.0 
91.0 f 3.3 100.8 f 5.6 (0.73) 
82.8 f 3.7 98.0 + 7.0 (-2.1) 
74.3 f 3.1 90.6 f 7.5 (-9.6) 
67.1 f 4.3 83.0 f 5.9 (-17.1) 
59.4 * 3.5 72.0 & 3.9 (-28.1) 

200.0 + 0.0 195.6 f 8.6 
182.1 f 5.0 196.7 f 7.6 (0.58) 
164.7 f 2.6 192.9 &- 6.8 (-1.4) 
148.2 + 4.6 179.1 k 10.6 (-8.4) 
134.1 f 5.4 162.7 f 10.4 (-16.8) 
118.2 & 3.3 137.2 f 6.5 (-29.9) 

300.0 f 0.0 294.4 f 10.7 
271.8 f 4.8 295.8 + 10.4 (0.49) 
245.3 + 5.7 288.3 f 13.3 (-2.1) 
219.0 * 7.0 267.5 f 14.7 (-9.1) 
198.9 f 7.4 242.4 k 8.8 (-17.7) 
179.8 f. 6.9 211.9 + 8.9 (-28.0) 

determined at a = 0 by only l-2%. These are 
remarkably accurate estimates, given that only cu. 
80% of the zones can be detected under these 
circumstancesi(eqn. 12 predicts that p/E = 0.8 13 at 
01 = 0.10). The accuracy of these Ss confirms the 
validity of the regression procedure, although its 
application is ,probably not optimized (see below). 
At larger c1 values, the estimates of E are too small, 
and their accuracy decreases substantially with 
increasing a. ljy and large, the percentage errors in Z 
are independent of m and depend only on a. For 
example, at c1 I= 0.20, the percentage errors in fi are 
-17.1, -16.8land -17.7form = 100,200and300, 
respectively. A similar trend was found when the 
“singlechromatogram method’ was applied to 1D 
chromatograms [ 131. 

Fig. 8 is a series of superimposed plots ofp vs. n; ’ 
generated from six 2D beds containing m = 100 
zones. The zone coordinates in these beds were 
identical; only zone diameter do (and hence a) was 

This warning is insufftcient, however; criteria 
other than the qualitative shape of the p vs. n, ’ plot 
are necessary to evaluate the accuracy of the esti- 
mated E values. Perhaps the most important crite- 
rion is the value of a, which can be calculated by 
numerical means (e.g., bisection method) from the 
estimated m, the number p of spots in the bed and 
eqn. 12. For example, the numerical solution to this 
equation for the results of one simulation, p = 92 

ne-’ 
Fig. 8. Graphs of p vs. n; 1 for m = 100 at six as. Values of p at 
n;’ value represented by the arrow are discussed in the text. 
Symbols corresponding to different G( values are A = 0; A = 
0.05; W = 0.10; 0 = 0.15; 0 = 0.20; 0 = 0.25. 
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and E = 100.7, is a = 0.044, which agrees closely 
with the a value, 0.05, from which the simulation 
was generated. Because this estimate of a is less than 
0.15, one has some confidence in the E estimate, 
which in fact is in error by only 0.7%. This criterion 
by itself is insu 

ff 
dent, however, because the esti- 

mates of 5 tend ~ to decrease with increasing a (see 
Table II), leading1 to deceptive underestimations of a 
itself. Hence, or+ must also compare the overall 
appearance of the spot density in the bed to that in 
computer simulations, such as those reported in Fig. 
4. Similar criteria are employed in evaluating the 
accuracy of fi esqimates determined by applying the 
“single-chromatogram method” to 1D chromato- 
grams [ 13,223. 

CONCLUSIONS 

The theories of Roach and Davis are superior to 
the theories of Rourdillon et al., Irwin et al. and 
Armitage in desc ibing overlap in 2D beds. Of these 
two, the theory o 

i 

Roach more correctly predicts the 
number of doub et and triplet spots over a wider 
range of a values than does the theory of Davis, 
which is correct only for a values less than ca. 0.20 
(/? = 1). Roach’s theory also correctly predicts the 
number of higher order multiplets. When zones are 
elliptical, however, both Roach’s and Davis’s theo- 
ries exhibit shortcomings in correctly predicting the 
total number of: spots and the number of singlet 
spots at a values greater than ea. 0.25 (/? = 1; y = 2). 
This shortcoming is of practical concern, as zones in 
2D separations are more elliptical than circular. In 
general, however, Roach’s theory should be the 
basis of future studies of statistical limitations on 2D 
separations of modest saturation (e.g., a < 0.25), at 
least until an adequate theory for the overlap of 
elliptical zones is developed. Along these lines, 
Davis’s theory tbr elliptical singlets shows some 
promise. 

The regression procedure proposed here has 
been validated b analyses of dozens of computer 

J simulations of ,D beds. The estimates of E so 
calculated are correct to within ca. 10% as long as 
a is less than ea. 0.15 (/? = 1). This study is 
preliminary, ho$vever, and merely validates the 
proposed procedure; it does not determine the limits 
on it. Indeed, the findings presented here are based 
on the interpretation of somewhat hypothetical 2D 

beds, in that the representative coordinates of 
multiplet spots as determined here do not corre- 
spond to any physically measurable positions. By 
considering more realistic means for counting spots, 
it should be possible to extend the a range over 
which this procedure applies, as is now argued. 

Based on the demonstrated success of the “single- 
chromatogram method” as a means for estimating 
Ei from the relative positions of maxima in single 
chromatograms [ 19,20,22], one anticipates that sev- 
eral advantages may accrue by identifying the 
maxima of measurable concentration pulses in a 
2D bed with the representative coordinates of 
spots. These coordinates physically could be mea- 
sured by a variety of means, e.g., densitometry 
or fluorimetry, and experimental data could be 
gathered easily for purposes of regression. Because 
an isolated multiplet could contain several such 
maxima, the identification of spot coordinates with 
maxima would correspond to a counting procedure 
in which /? c 1. This counting procedure could have 
distinct advantages. For example, if two zones 
slightly overlapped, it is possible that both zone 
centers would be observable as maxima. The dis- 
tances between these centers and other similarly 
determined centers in the 2D bed would more 
accurately represent the underlying zone structure 
than do the distances calculated as detailed in the 
Procedures section. Hence it is possible (moreover, it 
is probable) that the range of a over which the 
regression is applicable can be extended by using 
such a counting procedure. 

The reason why we did not interpret maxima as 
spot centers here is simple. In essence, we were not 
willing to delay communication of Roach’s theory, 
particularly in the light of the increased interest in 
the statistical limitations on 2D separations [23], 
while the necessary but intricate details of this 
counting procedure were worked out. First, mod- 
estly sophisticated software will be required to 
determine from computer simulations the positions 
of maxima without the simultaneous detection of 
false maxima (we found several false maxima in our 
preliminary efforts in this direction). Further, we do 
not know yet the appropriate value to assign to b for 
use with such a counting procedure. This value will 
have to be determined empirically by counting the 
numbers of maxima in a series of simulations and 
adjusting /3 until simulation and theory agree, as was 
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done to determine the empirical resolution factor, 
xx 0.5, for the SMO [lO-121. These activities are 
best deferred to another study. 
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